Half Bridge Controller and Driver for Industrial Linear Tubes

The MC33157 includes the oscillator circuit and two output channels to control a half-bridge power stage.

One of the channels is ground-referenced. The second one is floating to provide a bootstrap operation for the high side switch.

Dedicated Driver for Industrial Linear Tubes

- Main oscillator is current controlled, making it easy to set up by a single external resistor. On top of that, such a feature is useful to implement a dimming function by frequency shift.
- Filament pre-heating time control built-in
- The strike sequence is controllable by external passive components, the resonnant frequency being independently adjustable. This frequency can be made different from the pre-heating and the steady state values. A frequency sweep between two defined values makes this IC suitable for any series resonnant topologies.
- Dedicated internal comparator provides an easy lamp strike detection implementation.
- Digital RESET pin provides a fast reset of the system (less than $10 \mu \mathrm{~s}$). Both output MOSFET are set to "OFF" state when RESET is zero.
- Adjustable dead time makes the product suitable for any snubber capacitor and size of MOSFET used as power switches
- Designed to be used with standard setting capacitors $\leq 470 \mathrm{nF}$
- A voltage reference, derived from the internal bandgap, is provided for external usage. This voltage is 100% trimmed at probe level yielding a 2% tolerance over the temperature range

HALF BRIDGE CONTROLLER

 AND DRIVER FOR INDUSTRIAL LINEAR TUBES
SEMICONDUCTOR TECHNICAL DATA

DW SUFFIX
PLASTIC PACKAGE
CASE 751G
(SO-16L)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Tested Operating Temperature Range	Package
MC33157DW	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic SO- 16 L

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
High Side Max Voltage	V_{HS}	600	V
Differential Max Voltage $\mathrm{V}_{\text {HS }}-\mathrm{V}_{\text {OUT }}$	$\Delta \mathrm{V}_{\mathrm{HS}}$	16	V
High Side Output Voltage Range	V_{HO}	$\mathrm{V}_{\text {OUT }}-0.3$ to $\mathrm{V}_{\mathrm{HS}}+0.3$	V
Low Side Output Voltage Range	V_{LO}	-0.3 to +16	V
Max V HS Allowable Slew Rate	$\mathrm{dV}_{\mathrm{HS}} / \mathrm{dt}$	± 10	V / ns
Max $\mathrm{V}_{\mathrm{HO}} / \mathrm{V}_{\text {LO }}$ Allowable Slew Rate	$\mathrm{dV}_{\mathrm{HO}} / \mathrm{dt}, \mathrm{dV} \mathrm{LO}^{\text {/dt }}$	± 10	V / ns
Supply Voltage (Note 1)	V_{DD}	16	V
Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$	PD_{D}	600	mW
Thermal Resistance Junction-to-Air	$\mathrm{R}_{\theta \mathrm{J}} \mathrm{A}$	140	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	T_{J}	-40 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge [HBMI]	ESD	2.0	kV

ELECTRICAL CHARACTERISTICS (VD $=14 \mathrm{~V}$. All parameters are specified for $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient temperature unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
SUPPLY VOLTAGE					
Input Threshold Voltage Turn-On Turn-Off	UVON UVOFF	$\begin{aligned} & 11 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 8.5 \end{aligned}$	$\begin{gathered} 12.8 \\ 9.0 \end{gathered}$	V
Clamp Voltage @ ICLAMP = 10 mA	$\mathrm{V}_{\text {CLAMP }}$	15	16	16.5	V
Supply Current (Note 2)	Is		12		mA
Standby Current at No Load @ V ${ }_{\text {DD }}<$ UVOFF	ISTDBY		1.5		mA
Quiescent Current at No Load @ $\mathrm{V}_{\text {DD }}>\mathrm{UV}_{\text {ON }}$	I_{Q}		2.5		mA

OUTPUT DRIVERS ($\mathrm{V}_{\mathrm{LO}}, \mathrm{V}_{\mathrm{HO}}$)

High Side VDSON @ Source current $=250 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DS}}(\mathrm{P})$	-	880	1500	mV
Low Side VDSON @ Sink current $=300 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DS}}(\mathrm{N})$	-	880	1500	mV
High Side / Low Side rise time @ COUT $=2 \mathrm{nF}$	t_{r}		40		ns
High Side / Low Side fall time @ COUT $=2 \mathrm{nF}$	tf_{f}		35		ns

OSCILLATOR

Output Max Frequency	fosC			250	kHz
Internal Master Clock Duty Cycle	DC	-	50	-	$\%$
System operation programming recommended values	ROP	68		560	$\mathrm{k} \Omega$
	RPH	68		560	$\mathrm{k} \Omega$
	RENDSWEEP	68		2200	$\mathrm{k} \Omega$
	RDTA	10		250	$\mathrm{k} \Omega$
	COP	100		560	pF
VCOP High threshold		-	4.2	-	V
VCOP Low threshold		-	2.8	-	V
ICOP discharging current		-	400	-	$\mu \mathrm{A}$
ICOP over IROP current ratio		-	2.0	-	

TIMING

Preheat timing capacitor pulsed charging current (Duty Cycle=1/16)	ItpH	14	16	17	$\mu \mathrm{A}$
Filament preheat time with $\mathrm{C}_{\mathrm{PH}}=0.47 \mu \mathrm{~F}$	tPH	-	2.0	-	s
Strike sequence recycling time with $\mathrm{CPH}=0.47 \mu \mathrm{~F}$	tSK	-	125	-	ms
CPH charging current ratio	∂	-	1/16	-	
Strike sequence restart blanking time with $\mathrm{CPH}^{\text {a }}=470 \mathrm{nF}$	tbk	-	10	-	ms
Dead time: externally adjustable by Rdt	dt	0.3	-	2.5	$\mu \mathrm{s}$
Dead time adjust resistance (Recommended range)	Rdt	10	-	220	$\mathrm{k} \Omega$
Dead time tolerance	dtTol		± 10		\%

MC33157

ELECTRICAL CHARACTERISTICS (continued) ($V_{D D}=14 \mathrm{~V}$. All parameters are specified for $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient temperature unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
VOLTAGE REFERENCE					
Voltage reference @ LLOAD $=500 \mu \mathrm{~A}, \mathrm{~T} J=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {REF }}$	-	7.0	-	V
Line regulation @ ILOAD $=500 \mu \mathrm{~A}, \mathrm{TJ}=25^{\circ} \mathrm{C}$	$\Delta V_{\text {REF }}$	-	10	-	mV
Load regulation @ LLOAD $=500 \mu \mathrm{~A}$ to 5 mA	$\Delta \mathrm{V}_{\text {REF }}$	-	10	-	mV
Maximum load current	IREFMAX	-	-	25	mA
Total $\mathrm{V}_{\text {REF }}$ variation over Line, Temperature, Load	$\mathrm{V}_{\text {REF }}$	6.85	7.0	7.15	V

INPUT

Strike detect high voltage threshold	$\mathrm{VTH}_{\text {SD }} \mathrm{HI}$	-	4.0	-	V
Strike detect low voltage threshold	VTHSDLO	-	3.75	-	V
Maximum current on strike detect input @ Regulation level	ISDHI	-	-	10	nA
Maximum voltage on strike detect @ Regulation level	$\mathrm{V}_{\text {SD }} \mathrm{HI}$	-	-	7.0	V
Maximum current on strike detect input @ Low level	ISDLO	-	-	10	nA
Maximum strike detect voltage negative input	$V_{\text {SDNEG }}$	-	-	-0.3	V
Strike detect minimum pulse width	SDPW	50	100	-	ns
RESET high voltage	$\overline{\mathrm{RST}} \mathrm{HI}$	-	1.8	2.2	V
$\overline{\text { RESET }}$ low voltage	$\overline{\text { RSTLO }}$	1.6	1.8	-	V
$\overline{\text { RESET input current @ high voltage }}$		-	-20	-	$\mu \mathrm{A}$
$\overline{\text { RESET input current @ low voltage }}$		-	-20	-	$\mu \mathrm{A}$
RESET maximum voltage		-	-	7.0	V
RESET maximum negative voltage		-	-	-0.3	V

NOTES: 1. Since this device has a built-in zener, one cannot use a low impedance supply to drive this pin. Having a current limit mode by external means is mandatory. 2. Test Conditions: $\mathrm{C}_{\mathrm{OUT}}=2.2 \mathrm{nF}, \mathrm{f}=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$.

Pin	Symbol	Function	Description
1	VDD	Supply voltage input	This pin provides the DC supply to the circuit. The voltage is internally clamped by a zener connected to the ground. It is NOT allowed to use a DC low impedance power supply to feed this pin, but limiting the current by an external resistor is mandatory. It is recommended to damp this pin to ground by an electrolytic capacitor connected close to pin 1.
2	+ $\mathrm{V}_{\text {ref }}$	Voltage reference output	This pin provides a +7 V voltage reference derived from the internal bandgap. The + Vref can supply up to 25 mA and shall be decoupled to ground by a 220 nF ceramic capacitor
3	CPH	Preheat timing capacitor	This capacitor sets two timings: filaments preheat time (tPH) and strike sequence recycle time (tSK). It is charged with a constant current and cares must be observed to minimize the leakage current at this pin to get the expected timing. Typically, a $0.47 \mu \mathrm{~F}$ capacitor will give a 2 seconds pre-heating time and a 125 ms strike sequence recycle time. (See details given by figure 9)
4	RPH	Preheat and Strike frequencies adjustment resistors	The $R_{P H}$ resistor together with $R_{E N D S W E E P}$ and $C_{O P}$ defines the frequency used to preheat the filaments ($\mathrm{fPH}^{\prime}=\mathrm{f}_{1}$). RENDSWEEP defines the strike frequency ($\mathrm{f}_{\mathrm{END}}$. timing, the frequency will sweep from the high pre-heating f_{1} to the low strike f_{2} values. Normally, f_{1} is far from the LC resonance but f_{2} is close enough to generate the high voltage across the fluorescent tube. (See details given by figure 9)
5	CSWEEP	$\begin{aligned} & \text { Frequency } \\ & \text { sweep timing } \\ & \text { capacitor } \end{aligned}$	This timing define the sweep time from f_{1} to f_{2}. Since the timing capacitor is charged with a low constant current, cares must be observed to minimize the leakage current at this pin to get the expected timing. Since this capacitor is charged through resistor $\mathrm{RPH}_{\mathrm{PH}}$, the voltage rises according to an exponential and the frequency shifts with the same law.
6	$\mathrm{CoP}^{\text {O }}$	Oscillator capacitor	This pin defines the steady state operation frequency ($\mathrm{f}_{3}=\mathrm{f}_{\mathrm{OP}}$) of the controller. Since this timing capacitor is charged with a low constant current, cares must be observed to minimize the leakage current at this pin to get the expected frequency. Film type capacitor are recommended (polycarbonate).
7	ICO	Steady state operating frequency adjustment current input	Since the circuit uses a Current Controlled Oscillator (ICO), the current forced into this pin will control the operating frequency. The allowable current range is from $1 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$. The + Vref output can be used to provide the voltage across ROP. An auxiliary voltage source can be used to implement a dimming function.
8	DTA	Dead Time Adjust	This pin provides an access to the internal timing system to adjust the dead time between the gate drive of the High and Low power switches connected, respectively, to pin V_{HO} and V_{LO}.
9	SD	Strike detection input	This pin drives a comparator, with an internal fixed reference, and acknowledges the tube strike. When a negative going slope (across the internal reference) is detected, the system considers the lamp has struck and the oscillator jumps from the present frequency value, which is within the window defined by RPH and RENDSWEEP to the steady state value defined by ROP. If no negative going slope is detected on this pin, the system will repeat the sweep and strike sequence four times, then stops. The circuit will re-start from either a RESET, or by pulling + V ${ }_{D D}$ to ground. The input signal can be either a logic level or an analog voltage ramping up from zero to +Vref followed by a negative going slope to zero. In any case, the positive pulse width must be $1 \mu \mathrm{~s}$ minimum. The pcb layout must be designed to minimize the noise at this pin. (See details given by figures $8,9, \& 10$)
10	RESET	Master reset input	Forcing a logic zero to this pin (HCMOS low level) will reset the circuit, initializing a frequency sweep and lamp strike sequence. The master reset does not include the pre-heating timing. The minimum pulse width requested is 10μ s to guarantee a reset state. However, this pin has no built in filtering and a shorter pulse may initialize a reset sequence: it is the responsibility of the designer to make sure that no noise or parasitic pulse are developed at the RESET input. A full re-start of the sequence, including the pre-heating time, can be initialized by pulling the +VDD pin to ground. In this case, +VDD and RESET must be simultaneously released to a high state. When RESET is asserted low (active) both outputs MOS are biased in the off condition. An internal $20 \mu \mathrm{~A}$ pull up current forces the pin to logic one, allowing the designer to left this pin open if the RESET function is not used. In order to avoid any uncontrolled state of the output drivers, it is recommended to set up a 10 ms low level at pin 10. The reset is activated in less than 10 microsecond, but releasing this pin while the Vcc supply is high (above 300 V) can generate a random operation, depending upon the dv/dt coming from the power supply.
11	GND	Ground (zero voltage reference)	Since high and fast currents circulate in the circuit, it is mandatory to build a single ground point in the system.
12	VLO	Low side driver output	This pin provides the V_{GS} to drive the Low side power MOSFET.
13	NC	Not Connected	
14	V OUT	High side common point/ Half bridge output	This pin is connected to the output of the half bridge and is referenced for the High side switch.
15	V_{HO}	High side driver output	This pin provides the V_{GS} to drive the High side power MOSFET.
16	V_{HS}	High voltage boost supply	The gate drive of the High side switch is derived from this voltage.

MC33157

Figure 1. PIN 6 COP INPUT

Figure 2. PIN 3 CPH INPUT

Figure 3. PIN 10 RESET

Figure 4. PIN 9 SD

MC33157

Figure 5. PIN 8 DTA

Figure 6. PIN ICO

Figure 7. PIN 2, 4 \& 5 Vref, RPH \& CSWP

Figure 8. STRIKE DETECTION

Figure 9. TIMING DIAGRAM (Normal startup sequence and UVLO reset)

$f_{1}=f_{P H}$, preheating frequency adjusted by RPH and RENDSWEEP
$f_{2}=f_{\text {ENDSWEEP, }}$ end of sweep frequency, adjusted by RENDSWEEP (pin 2). In any case $f_{1} \geq f_{2}$
$f_{3}=f_{O P}$, operating frequency controlled by the ICO current (pin 7) and capacitor C_{OP}
$t_{\text {PH }}=\left(\right.$ CPH $^{*} 2 / 3 *$ Vref $) /\left(\partial^{*}{ }^{1}\right.$ tPH $)$
"OFF" state: High side switch OFF, Low side switch ON

Figure 10. TIMING DIAGRAM (External reset)

When $\overline{\operatorname{RESET}}$ pin is released to a logic one, the system jumps to the preheat frequency as defined by RPH, then executes a frequency sweep down to $f_{\text {ENDSWEEP, as defined by }}$ RENDSWEEP, and waits until a strike detection signal is applied to pin 9 . There is no preheating timing performed after a reset coming from pin 10 .
$\overline{\text { RESET logic level is CMOS compatible. }}$
Note: Strike detection lever can be either digital - CMOS or analog as depicted here above, as long as the signal fulfills the SDHIGH and SDLOW values and timing.
OFF STATE: both output MOSFET are biased in the off condition.

Figure 11. TIMING DIAGRAM (no strike conditions)

tsF: Sweep Frequency time. This time is given by the RC network built with CSWEEP and RPH tSK: Sweep sequence recycle time. This time is derived by integrating a constant DC current in capacitor CPH. There is a fixed ratio (∂) between the preheating time tPH and strike sequence recycle time tSK. $\mathrm{t}_{\mathrm{f}} \mathrm{END}$: Time during which $\mathrm{f}=(\mathrm{f}$ ENDSWP). This time is equal to $\mathrm{tSK}-\mathrm{tSF}$.

The controller repeats the fSWEEP and the strike sequence until there is a STRIKE signal coming from the external circuit, or until FOUR sequences have been counted. Following a non strike situation, the controller goes in a full STOP and can be reinitialized by either pulling the VDD pin 1 to ground or by forcing a low to the $\overline{\text { RESET pin } 9 \text {. The controller }}$ assumes the lamp has struck when a negative going transient is applied on the STRIKE detection pin 10. On the other hand, in order to avoid false strike information, the controller force a blank time between the end of tSWEEP and the start of the next sequence.

Figure 12. OUTPUT = f(freq) @ Lc = $1.5 \mathrm{mH}, \mathrm{Cs}=6.8 \mathrm{nF}$

MC33157
Figure 13. Typical Application Schematic Diagram

T1	$\mathrm{Np}=$	R1	$390 \mathrm{k} \Omega$	C1	$470 \mathrm{nF} / 25 \mathrm{~V} /$ Polyester
	$\mathrm{Ns}=$	R2	$62 \mathrm{k} \Omega$	C2	$470 \mathrm{pF} / 2 \% / 50 \mathrm{ppm}$
	$\mathrm{Lp}=150 \mathrm{mH}$	R3	$100 \mathrm{k} \Omega-0.5 \mathrm{~W}$	C3	$10 \mu \mathrm{~F} / 25 \mathrm{~V} /$ Electrolytic
Q1	MTP6N60E	R4	$100 \mathrm{k} \Omega$	C4	$220 \mathrm{nF} /$ Polyester
Q2	MTP6N60E	R5	$82 \mathrm{~K} \Omega$	C5	$100 \mathrm{nF} / 63 \mathrm{~V} /$ Polyester
D1	MUR160RL	R6	$1 \mathrm{M} \Omega$	C6	$220 \mathrm{nF} / 25 \mathrm{~V} /$ Polyester
D2	MUR120RL	R7	$68 \mathrm{~K} \Omega$	C7	$6.8 \mathrm{nF} / 5 \% / 1000 \mathrm{~V}$
D3	1 N 4148	R8	$68 \mathrm{k} \Omega$	C8	$100 \mathrm{nF} / 400 \mathrm{~V}$ /Polyester
U1	MC33157	R9	22Ω	C9	$100 \mathrm{nF} / 400$ V/Polyester
				C10	$22 \mu \mathrm{~F} / 450$ V/Electrolytic
				C11	$100 \mathrm{nF} / 25 \mathrm{~V} /$ Polyester
				C12	$330 \mathrm{pF} / 500 \mathrm{~V} /$ Polyester

TO SEE: AN1682 (Using the MC33157 Electronic Ballast Controller)

MC33157

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MC33157

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141

Customer Focus Center: 1-800-521-6274
Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$ Motorola Fax Back System - US \& Canada ONLY 1-800-774-1848 -http://sps.motorola.com/mfax/ ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334
HOME PAGE: http://motorola.com/sps/

